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Abstract 

 The Republic of Singapore Air Force (RSAF) conducts Logistics Support 

Analysis (LSA) studies in various engineering and logistics efforts on the myriad of air 

defense weapon systems.  In these studies, inventory spares provisioning, availability and 

sustainability analyses are key focus areas to ensure asset sustenance.  In particular, 

OPUS10, a commercial-off-the-shelf software, is extensively used to conduct reparable 

spares optimization in acquisition programs.  However, it is limited in its ability to 

conduct availability and sustainability analyses of time-varying operational demands, 

which are crucial in Operations & Support (O&S) and contingency planning.  As the 

RSAF seeks expansion in its force structure to include more sophisticated weapon 

systems, the operating environment will become more complex.  Agile and responsive 

logistics solutions are needed to ensure the RSAF engineering community stays abreast 

and consistently push for deepening competencies, particularly in LSA capabilities. 

 This research is aimed at the development of a model solution that combines 

spares optimization and sustainability capabilities to meet the dynamic requirements in 

O&S and contingency operations planning.  In particular, a unique dynamic operational 

profile conversion model was developed to realize these capabilities in the combined 

solution.  It is envisaged that the research effort would afford the ease of use, versatility, 

speed and accuracy required in LSA studies, in order to provide the necessary edge in 

inventory reparable spares modeling. 
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I. Introduction 

Overview 

 This paper discusses Republic of Singapore Air Force inventory modeling of 

reparable spares.  The Republic of Singapore Air Force (RSAF) conducts Logistics 

Support Analysis (LSA) studies in support of the various engineering and logistics efforts 

on the myriad of air defense weapon systems.  Depending on the Life Cycle Management 

(LCM) phases of the weapon system, these studies can take the form of Reliability, 

Availability, Maintainability & Supportability (RAMS) front-end system definition 

analyses; and Maintenance Support Planning & Capability Generation analyses for 

Integrated Logistics Support (ILS) during Acquisition and Operations & Support (O&S) 

phases.  In particular, spares provisioning, availability and sustainability are focus areas 

in LSA studies to optimize the support for weapon systems, spanning all phases of the 

LCM.  This is especially crucial in an Air Force that operates with a relatively small force 

structure and heavily reliant on both Foreign Military Sales (FMS) and Original 

Equipment Manufacturers (OEM) for the continuous supply of aircraft spares to sustain 

fast changing operational requirements.  In addition, the deterrence and diplomacy nature 

of the RSAF mission means that operational requirements manifest as planning 

parameters rather than real operations, and hence, grounded forecasting mechanisms play 

vital roles in resource optimization. 

 Because of the realities that the RSAF faces in the conduct of her missions, a 

comprehensive suite of commercial off-the-shelf software had been acquired over the 

years for performing the various LSA studies.  Specifically, reparable spares inventory 

modeling is conducted through the Optimization of Units as Spares (OPUS10) software 
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(DISO, 2009:10-1 to 10-2).  OPUS10 is a computer-based analytical software developed 

by Systecon®, a Swedish company with customers that include Defense Authorities in 

USA, Great Britain and Australia.  It is an optimization software that uses a mathematical 

analytic model to analyze critical factors affecting a weapon system’s availability and its 

associated spares build-up costs.  The RSAF had been employing OPUS10 in many 

weapon system acquisition studies to primarily determine the optimum spares support 

package, given expected operating parameters and logistics & maintenance design plans 

on new induction platforms.  Due to its extensive use in the RSAF, OPUS10 is also being 

employed during O&S phases to conduct regular reparable spares review and “top-up” 

purchases, complementing consumable spares Economic Order Quantity (EOQ) studies 

automated through the integrated SAP® Enterprise Resource Planning (ERP) information 

system of the RSAF.  A more in-depth review of OPUS10 capabilities will be provided in 

the Literature Review chapter. 

Problem Background 

 Although OPUS10 provides a compatible tool in acquisition settings where 

advance planning can be undertaken with detailed construction of the spares hierarchical 

structure, its performance is rather stretched in analyzing O&S phases of spares 

sustainment which warrants time-sensitive assessment of spares bottlenecks and the 

consequent effects on weapon system availability assessment.  In particular, it is not well 

suited for analyzing multi-indenture and multi-echelon interactions of aircraft reparables 

and sensitivity analyses, which are evident in RSAF’s O&S logistics structures, 

organized around Operational, Intermediate and Depot (OID) level maintenance systems.  

Moreover, the heavy reliance on OPUS10 over the years, results in curtailing of 
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fundamental competencies in spares reserve planning.  Users become inapt to provide 

additional insights on effects of surge planning and supply chain constraints as a result of 

the limitations of the OPUS10 software.  The author of this research had first-hand 

experience with operating OPUS10 and constantly faced the challenge to provide 

accurate and quick assessment of weapon system availability to decision makers in 

Exercise planning scenarios. 

 It became apparent that a novel solution that affords ease of use, versatility, speed 

and accuracy must be developed for studying spares optimization and sustainability in 

O&S planning and contingency operations.  This forms the basis of the research problem. 

Research Objectives 

 The intent of this research is to develop a model solution that affords ease of use, 

versatility, speed and accuracy in spares optimization and sustainability analyses 

conducted for O&S planning and contingency operations. 

 From the above main problem statement, three investigative questions were 

examined in this research: 

(1) What model solution can be developed to combine ease of use, versatility, speed 

and accuracy for spares analyses? 

(2) What model solution can be developed to conduct spares optimization and 

sustainability analyses for O&S planning and contingency operations? 

(3) How can the developed model solution be validated for practical deployment? 
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Research Motivation 

 This research is timely as the RSAF seeks expansion in its force structure to 

include more sophisticated weapon systems, such as the F-35 Joint Strike Fighter.  The 

Engineering and Logistics arm of the RSAF, the Air Engineering and Logistics 

Organization (AELO), must constantly seek agile and responsive logistics solutions in 

ensuring she meets the engineering demand of the Third Generation RSAF 

transformation (Ng, 2012:36).  In addition, the roll out of the Military Domain Experts 

Scheme (MINDEF, 2009:7) in the RSAF engineering community also meant a push for 

deepening competencies in all logistics career fields and it is opportune to fundamentally 

reshape expertise in functional areas like the RSAF Supply Chain Management.  It is thus 

envisioned that the conduct of this research will not only ground supply chain material 

planners in their core competencies but also ensure that they are able to conduct swift, 

accurate and credible inventory spares analyses to support O&S and Exercise planning 

and hence expand expertise on operational spares planning on future operating concepts. 

This paper explores the development of a model solution that affords ease of use, 

versatility, speed and accuracy in spares optimization and sustainability analyses 

conducted for O&S planning and contingency operations.  First, a literature review 

provides an overview of the RSAF reparable repair cycle, outlining the limitations of 

OPUS10 in the conduct of LSA studies.  The review will also cover fundamental 

inventory METRIC models in use in other military establishments to build the foundation 

for development of the unique model solution.  A description of the solution 

methodology will then be discussed, followed by an analysis of the results of model 
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development, verification and validation.  Finally, recommendations for implementation 

of the model and avenues for further research will be presented. 
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II. Literature Review 

RSAF Reparable Repair Cycle  

 Operational, Intermediate and Depot (OID) Levels Maintenance Support 

Concepts are documented in Air Force Logistics Orders (AELO, 2012:1-4) and the 

Singapore Ministry of Defence Life Cycle Management Manual (DISO 2009:5-1 to 5-5).  

Such concepts describe the inter-relationships of repair processes of RSAF’s organic 

operational (O) level Line Replaceable Units (LRUs) and intermediate (I) level Shop 

Replaceable Units (SRUs), and strategic contractor’s depot (D) Level Sub-Shop 

Replaceable Units (SSRUs).  Figure 2-1 depicts a typical maintenance support scenario: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1.  RSAF Reparable Maintenance Support Scenario 
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 With reference to Figure 2-1, each operating site (air base) has several weapon 

systems (aircraft), the use of which generates LRU failures and thus demands for 

replacement components.  Each site has its own aircraft repair crew that removes and 

replaces failed LRUs based on an average Mean Time To Repair (MTTR), inclusive of 

the time it takes for drawing serviceable spares from the site store.  A spare LRU is 

issued if one is on hand, else a backorder is established. 

 A failed LRU enters the pipeline network when it is sent from the store to either 

the on-site workshop for I level repairs or to the OEM for Overseas Depot (OD) repair, 

based on the maintenance capability designated for the LRU.  For LRU with I level repair 

capability only, the associated turnaround time (pipeline time) comprises both shipment 

times from store to on-site workshop (Tsw) and from on-site workshop back to store 

(Tws), plus the repair lead time (RLT) of the I level workshop (RLTI).  While for LRU 

with OD repair capability only, the turnaround time comprises the shipment time to and 

from the OEM (TOD) and the agreed contractual RLT (RLTOD). 

 During the process when a failed LRU is repaired in the on-site workshop, a 

second-indenture, SRU is identified as having failed.  If a spare SRU is available in the 

workshop, the failed SRU is removed and replaced by the workshop repair crew and the 

LRU repair is completed, otherwise an SRU backorder is established at either the 

strategic contractor Local Depot (LD) or the OEM for OD repair, depending again on the 

maintenance capability designated for the SRU. 

 The weapon systems supported by the store constantly generates demands that 

consume spares in the store.  The average pipeline time translates to average pipeline size 

(average lead time demand) through the individual component failure rate (that is, 
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demand rate).  This pipeline size describes the total number of LRUs or SRUs that have 

left either the on-site store or workshop for repair but have not returned from the 

respective repair agency.  AELO uses this concept in its spares acquisition programs to 

define peacetime requirements for weapon system induction (DISO, 2009:10-1). 

OPUS10 

 OPUS10 (Optimisation of Units as Spares) is a steady-state Logistics Support 

Analysis (LSA) software designed to calculate optimized cost-availability of spares and 

their distribution in the maintenance support organization (Systecon AB, 2007:1-4).  An 

operational scenario with aircraft deployment, utilisation profiles and logistics stations 

(stores, workshops and depots) is modeled to establish a joint pattern of demand for 

logistics support.  Maintenance and logistics activities (e.g. failure rate, inventory support 

concept) are also modeled.  With this information, the software outputs optimal spares 

packages to support different required operational availability (Ao).  This optimal spare 

package is a result of the “best-possible” relationship between cost and operational 

availability. 

 Central to the OPUS10 model is an analytic stationary Poisson process model.  

The computations are based on evaluating the pipeline sizes of the components given the 

maintenance structure, operational demands and average failure rates.  These pipeline 

sizes translate to expected backorders and an optimization is performed to trade-off 

between Ao and cost of spares to produce a Cost-Effectiveness Curve as shown in Figure 

2-2: 
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Figure 2-2.  OPUS10 Sample Cost-Effectiveness (Availability vs Cost) Curve 

 

 OPUS10 modeling concept is purely analytical and requires stationary operational 

demand parameters.  While this ensures LSA studies can be easily and quickly computed, 

it is rather limited in its ability to model highly varied operational demand patterns (for 

example, frequently changing flying profiles in contingency operations).  In addition, the 

highly customized graphic user interface also meant that the optimization engine behind 

OPUS10 modeling is completely hidden from the user.  While this takes away the 

mathematical woes of the analyst, it results in curtailing of competencies in 

understanding the fundamentals behind the model, which is key when conducting 

sensitivity analyses of changes of logistics variables often encountered in O&S and 

contingency operations.  In addition, the speed afforded by OPUS10 is only as good as 

the run time and much attention is instead spent in constructing the model inputs.  The 

author of this research collated data for a prior study in 2009 and determined a 90 

minutes average requirement for conducting an OPUS10 LSA analysis: 
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Category Sequential tasks for a single analysis 
Time Required 

(mins) 

Data 
Entry 

Collate and manipulate input data in Excel 15 

Convert input data to software input format 30 

Modeling 

Create / Modify existing software's operations and 
logistics profile model 25 

Input of data into OPUS10 software 10 

Results 
Output 

Generate run results 5 

Analyze results 5 

Total Time Required 90 mins 

Table 2-1.  Time Required in OPUS10 LSA Studies 
 

 Another limitation of OPUS10 is its (s-1, s) inventory model for reparables.  

Although this is well suited for modeling low demand, high cost LRUs and SRUs, it may 

not accurately represent the high demand and low cost SSRUs.  This is apparent in AELO 

case where current inventory policies do not spell out the modelling techniques for such 

items.  OPUS10 was never designed for modelling these lower indenture items and an 

Economic Order Quantity (EOQ) model may perform better to implement a reorder 

point, order quantity (R, Q) policy for SSRUs.  Finally, the Poisson process assumption 

used by OPUS10 postulates all components fail at random, with a Variance-to-Mean-

Ratio (VTMR) of 1.  This may not accurately represent in-service reparables which 

commonly fail due to wear-out (VTMR < 1) or due to reliability deterioration (VTMR > 

1) (Adams et al., 1994:7 and 26-27; Sherbrooke, 2004: 62-63, 89-91). 

 Notwithstanding the limitations, this research will build upon the strength of the 

analytical methodology of OPUS10 to harness its concept of ease of use and speed, while 
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negating the limitations by revisiting the fundamentals in reparables inventory modeling 

and modifying the baseline concept for more accurate and versatile model development. 

METRIC Models 

 The mathematical concepts behind OPUS10 can be traced to the Multi-Echelon 

Technique for Recoverable Item Control (METRIC) (Sherbrooke, 1968: 122-141).  

METRIC is a base-depot supply system model that calculates the optimal (s-1, s) 

stockage level for LRU items at each of several bases and the supporting depot.  It 

utilizes the concept of minimization of the base backorders in relation to the demand 

patterns in both the base and the depot.  This results in a systems level approach to 

stocking spares by analyzing the relation between backorders and system availability.  A 

systems cost effectiveness curve is obtained by analysing the marginal benefit of 

increased availability from the next best option in spares purchase in terms of reduced 

overall system backorders (“bang per buck”).  The METRIC model was a natural 

transition from Sherbrooke’s prior work on the single indenture, single echelon Base 

Stockage Model (Feeney et al., 1965: 391-411). 

 Central to the METRIC model is the infinite channel queueing assumption of the 

Palm’s Theorem (Sherbrooke, 2004: 22), which assumes demand for an item follows a 

Poisson process and that the probability distribution of the pipeline size is also Poisson.  

While this simplifies computations, item failure rates are consequently assumed to follow 

a VTMR of 1.  However, this poorly models reliability deterioration and wear-out 

phenomena associated with aircraft components.  This resulted in less than optimal 

prediction performance of the METRIC model, underestimating the items backorders 

leading to higher than observed operational availabilities and lower spare stockage levels. 
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 The MOD-METRIC model (Muckstadt, 1973: 472-481) extended the multi-

echelon base-depot supply to encompass analysis of multi-indenture systems (LRUs and 

SRUs) while retaining the stationary Poisson assumption.  The complex dependencies 

from both the echelon and indenture structures further understate the backorders by 

nearly a factor of 4 (Sherbrooke, 2004: 67).  Subsequent works from Gross, Graves and 

Sherbrooke (Gross, 1982: 1065-1079; Gross et al., 1983: 344-352; Graves, 1985: 1247-

1256; Sherbrooke, 1986: 311-319) perfected the inventory modeling technique with the 

introduction of the VARI-METRIC model to generalize the stationary Poisson process to 

better model failure distributions described by the Binomial probabilities (for VTMR < 1) 

and Negative Binomial (for VTMR > 1). 

 The VARI-METRIC model afforded better accuracy with stock level deviation of 

1 unit observed only in less than 1% of the case studies analyzed (Sherbrooke, 2004: 

102).  It was eventually adopted by USAF in the form of the Aircraft Availability Model 

(AAM) and is used for computing peacetime spares requirement (O’Malley, 1983: 1-3; 

Sherbrooke, 2004: 228; Blazer, 2007: 67-68).  It became the benchmark inventory 

modeling technique, even till today, due to its robust modeling fundamentals and well 

documented mathematical solutions.  However, it was strictly confined to peacetime 

spares modeling due to its requirement of a homogeneous Poisson process (that is, 

constant failure/demand rate).  The concepts of VARI-METRIC were later modified into 

the Dyna-METRIC model to allow the conduct of wartime sustainability studies, which 

are characterized by varying periods of operational demands.  Dyna-METRIC utilizes a 

dynamic form of Palm’s theorem to effectively change the items’ failure/demand rates 

based on planned changes to the flying profile.  However, it is best described as an 
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assessment model rather than an optimization model and users have to first specify a 

level of spares and Dyna-METRIC determines the fleet availability that can be met with 

the planned flying intensities (Sherbrooke, 2004: 194).  In addition, the adoption of a 

hazard rate λ(t) instead of a constant failure rate λ also meant that the computations 

become rather complex for model development.  The Dyna-METRIC was adopted by 

USAF in the form of the Aircraft Sustainability Model (ASM) and was extensively used 

in modeling contingency operations (Slay et al., 1996: 1-3 to 1-6, Sherbrooke, 2004: 

194; Blazer, 2007: 68). 

Perspectives of the Current Research 

 Given the insights of the RSAF reparable cycle, OPUS10 limitations and the 

foundations of the METRIC models, the current research can be aligned to develop a 

unique model solution, harnessing the advantages of the various perspectives and 

mitigate the limitations.  To aid in the alignment, the investigative questions are analyzed 

to seek the best adaptation of the solution methodology: 

 

(1) What model solution can be developed to combine ease of use, versatility, speed 

and accuracy for spares analyses? 

 The VARI-METRIC model, with its well-founded mathematical solutions, 

emerges as the best fit for tailoring the current research model solution.  The ability to 

model stationary Poisson processes but yet generalized to handle failure rate variances, 

provide analytically tractable computations, which can be easily optimized in a 

spreadsheet non-linear programming (NLP) model.  This will afford ease of use and 

speed for the solution.  Versatility and accuracy of the model will depend on the 
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modifications of the VARI-METRIC to tailor to the unique RSAF context of reparable 

repair cycle.  For this, the differences in repair pipeline depiction from the RSAF context 

need to be analyzed.  The VARI-METRIC model is represented by the following 

visualization (Sherbrooke, 2004: 107): 

 

 

 

 

 
 

(Arrows represent sequence of backorder computations) 

Figure 2-3.  VARI-METRIC Pipeline Visualization 

 

 Comparing Figure 2-1 and 2-3, two unique differences can be deduced.  First, the 

VARI-METRIC model is tailored to the USAF mode of operations where LRUs and 

SRUs repairs are carried out by the Base or Depot depending on complexity of repair, 

whereas in the RSAF case, repair agencies are identified upfront for the different 

component types, and LRUs and SRU repairs are allocated distinctly to either local or 

overseas depot repair depending on the state of organic capability and standing third-

party technology transfer agreements (TPTA) with the US Foreign Military Sales (FMS) 

Program and the respective OEMs.  Second, the local depot capability (provided by 

commercial strategic contractor to the RSAF) was developed to solely focus on the repair 

of SRUs and a healthy level of SSRU stock is important to provide self-sustaining in-

country capability, especially important during contingency operations where effects of 

4. Base LRU Pipeline 2. Depot LRU Pipeline 

3. Base SRU Pipeline 1. Depot SRU Pipeline 
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embargo are expected.  As most SSRUs are low-cost, high demand items, their stockage 

policies cannot rely solely on backorder computations and a unique solution is required 

which favors concepts from a (R, Q) EOQ model. 

 Given the applicability of the VARI-METRIC model, the current research will 

employ this technique as the basis of the model, while designing modifications to 

accommodate the distinctiveness of the RSAF context.  A spreadsheet model would be 

the main platform to deploy this optimization model given the strength of a “What You 

See Is What You Get” (WYSIWYG) interface1.  This allows analysts to better appreciate 

the interactions between the model specifics and hence create the needed edge for 

conducting quick sensitivity analyzes (Seila, 2005: 34).  This consequently assists to 

ground the necessary knowledge and expertise in inventory modeling, one of the main 

hurdles that limits OPUS10 usage in such settings. 

 

(2) What model solution can be developed to conduct spares optimization and 

sustainability analyses for O&S planning and contingency operations? 

 VARI-METRIC was developed as a peacetime spare model and limited in its 

application for handling contingency analyses.  Dyna-METRIC was more suitable but the 

complex modeling nature may impede the ease of use characteristics required of the 

research solution.  If a novel approximate solution can be derived from the relationship of 

flying operational demands to other related factors, rather than failure rate changes 

                                                 
1 “What You See Is What You Get” (WYSIWYG) is a computing concept popularized in desktop 
publishing design.  It is extensively used in Web 2.0 design to create interactive web pages where 
the man-website interface is made to mimic desktop applications to enhance the user experience 
(Wolber et al., 2002: 228-229). 
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suggested by the Dyna-METRIC, the stationary Poisson process suggested by Palm’s 

theorem can be retained for model simplicity, preserving the VARI-METRIC 

characteristics.  This challenge will be a main focus area for the model development. 

 

(3) How to ensure that the developed model solution is validated for practical 

deployment? 

 OPUS10 was a software solution that was constantly validated with real logistics 

operations in the RSAF.  With that in mind, the research solution will be validated with 

OPUS10 to compare the output results.  While OPUS10 may be limited in modeling 

versatility when compared to the objectives of this research, it is hypothesized that the 

validation results will be comparatively close since fleet availability is only a function of 

LRU backorders.  In addition, if the proposed model is developed from a small subset of 

reparables, the compounding variances will not be too significant.  These will ensure that 

the two platforms will be comparable in their respective models and valid conclusions 

from the results can be analyzed. 
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III. Methodology 

 This chapter documents the development of the unique solution models for 

analyzing the availability and sustainability of the RSAF reparable inventory.  First, the 

conceptual flow of the model development will be constructed to guide the research 

effort.  Second, valid assumptions that aid in aligning the focus of the model will be 

described.  Third, the data requirement and collection for the model input will be 

expounded to form the basis of the analysis parameters.  Fourth, the fundamental 

inventory modeling equations will be presented to provide a theoretical foundation for 

implementing the model.  This will then guide the unique customization of the equations 

required for studying the RSAF reparable inventory concept.  Subsequently, to tailor the 

model for both optimization and sustainability analyses, a novel solution will be 

developed to treat varying operational demand requirements to a form suitable for the 

analytical model.  Finally, the development of the model solution will be explained 

through the steps necessary to chart out the analysis in a spreadsheet environment. 

Conceptual Flow 

 Figure 3-1 details the conceptual flow of this research effort.  Three distinct 

development phases will help guide the process of model development.  First, in the 

‘Definition’ phase, the fundamental inventory equations are visited to make sense of their 

applicability to the RSAF reparable maintenance context.  In addition, the mechanics of 

dynamically changing operational demands will be examined to understand the variables 

that affect the utilization of spares in sustainability scenarios.  These will aid in 

conceptualizing the principles behind the model solution.  Concurrently, data collection 
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of both logistics and operational parameters will also proceed to facilitate the scanning of 

available information that will shape the model solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-1.  Research Conceptual Flow Chart 
(Excerpted from Banks et al., 2010:34-39) 
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 Second, in the ‘Development’ phase, two models will be formulated to provide a 

combined solution to spares optimization and sustainability analysis.  Initially, a dynamic 

operational profile conversion model will assist to analyze the effect of varying 

operational demands on system and logistics parameters and output these as modifiers to 

the inputs of the subsequent optimization/sustainability model.  This latter model must 

furnish the provisions to analyze all levels of spares hierarchy, unique to the RSAF 

reparable repair cycle, and output an optimized spares package; and also be able to accept 

the changes in system and logistics parameters in order to afford the ability to conduct 

sustainability analysis.  Verification and Validation will follow in the next chapter to 

compare the outputs from the developed model and an equivalent analysis obtained from 

OPUS10, so that insights can be obtained on the similarities and differences. 

 Finally, in the “Deployment” phase, the model will be used in sustainability 

analysis mode to gain appreciation of the performance of selected spares packages as 

they are deployed to support operations in a dynamic profile environment.  The insights 

provided will translate to usable provisions for future sensitivity analyses.  The research 

will then conclude on the recommendations for deployment of the developed model, re-

visiting the assumptions to highlight the areas for improvement; and develop proposals 

for future research opportunities. 

Assumptions 

 As many factors can influence inventory modeling, various assumptions are 

important to focus the research effort on the primary purpose of developing an 

optimization and sustainability tool.  Some of the main guiding assumptions are: 
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(1) For operational inputs, this research is confined to the analysis of a typical 

fighter fleet operating in-country in one Air Base.  Performance is analyzed to 

support an assumed operating profile and utilization. 

(2) For logistics inputs, the scope will be confined to a representative set of 

reparable spares from critical aircraft mechanical and electrical sub-systems.  

To demonstrate the model applicability, these spares were chosen based on the 

myriad of possible repair capabilities (I, LD and OD cap) associated with the 

maintenance support context of the RSAF.  In particular, depot level SSRUs 

are confined to a subset of propulsion spares to provide an indicative analysis 

of the LD echelon. 

(3) Direct costs of spares are key focus of the study and indirect costs (e.g. 

warehousing, forward deployment) are not considered.  This ensures that only 

the main cost drivers are analyzed. 

(4) Maintenance effects (cannibalization and manpower constraints) are not 

considered.  Focus is on supply effects on availability. 

(5) Spares are assumed pre-positioned in operating Air Base and lateral supply 

support from other Bases are not considered.  This provides a conservative 

modeling approach, particularly applicable in contingency operations, where 

sufficient spares need to be catered to maintain “self-sustenance” mode. 

(6) An (s-1, s) inventory policy is assumed for all LRUs, SRUs and OD SSRUs, 

which mean such items are assumed not batched up for repair (Poisson 

process) and scrapped units are replaced on a one-for-one basis.  For the case 

of LD SSRUs where demand rates are sufficiently high and costs are 
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sufficiently low, the EOQ inventory policy model (R,Q) is more suited for 

replenishment considerations. 

(7) Embargo conditions are assumed in order to model realistic effects in 

contingency operations.  Hence, maintenance capability resides only in-

country as a consequence, at the onset of the sustainability period (i.e. only I 

and LD repair caps exist for continuous resupply and OD spares are 

“discarded” when defective). 

(8) For lack of field experimentation data, software validation with OPUS10 is 

employed to provide a substitute comparative measure of model performance. 

(9) Failures are assumed independent.  A defect associated with any component 

does not affect the failure probability of another component in the same 

aircraft sub-system or other sub-systems. 

(10) Only corrective maintenance (CM) is assumed to affect overall system Ao 

performance.  Owing to its inherent predictability and hence different 

stocking policies, Preventive Maintenance (PM) is not considered to have any 

effect on failure probabilities. 

Data Collection 

 Data needed for this research project is primarily sourced with the assistance from 

AELO HQ.  The subset of spares was selected on the premise that they exhibit indicative 

wear-out and reliability deterioration phenomena.  On this note, the aircraft sub-systems 

considered are propulsion, fuel, hydraulic, flight control and weapon delivery systems.  In 

particular, the propulsion sub-system was expanded to include SSRUs.  Spares 

information are extracted from the RSAF ERP system and include: 



22 

(1) LRU, SRU and SSRU hierarchy family tree and maintenance allocation chart. 

(2) Work Unit Codes (WUC) of the Work Breakdown Structure of sub-systems. 

(3) Mean Time Between Failure (MTBF) of individual spares and average Mean 

Time To Repair (MTTR) duration of AELO’s maintenance efforts. 

(4) Spares information – Quantity Per Next Higher Assembly (QPNHA), Cost 

(USD Million), Stock Level, Procurement Lead Time (PLT)/ Inventory 

Holding Cost Rate/ Ordering Cost of SSRU and transportation times. 

 The duration of the data sources was based on a minimum three year peacetime 

period.  Information on SSRUs was obtained from depot contract management staff.  In 

addition, various correspondences with AELO support staff were also made to obtain 

expert opinions on realistic measures when information is not available or when 

confirmation of planning norms is needed.  Detailed spares information is provided in 

Appendix A.  For operational planning parameters, flying hours (FH), sustainability 

period duration and deployment concepts are required.  Due to the sensitivity associated 

with such data and since this research is essentially a proof of concept; surrogate values 

are assumed, indicative of the varying operational demand profile. 

Fundamental Inventory Modeling Equations 

 The literature on inventory modeling focuses on the concept of backorder, 

pipeline and Ao computations (Sherbrooke, 2004: 19-41).   

Backorder Equations 

 The Expected Backorder (EBO) equation is derived from the first central moment 

in probability theory and is shown in Equation 1: 
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                                                       (1) 

where 

 EBO(S) is the expected backorder associated with the stock level S of an item 

 x is a discrete random variable 

 Pr (X = x) is the probability distribution of the variable x 

Given a stock level and probability distribution, Equation 1 computes the predicted 

number of backorders in an inventory of reparables.  For simplicity of computation, a 

closed form version of Equation 1 is shown below in Equation 2: 

                                          (2) 

where 

 μ is the expected value or mean of the demand for an item with stock level S 

  
 Besides the EBO equation, key to this research is the Variance Backorder (VBO) 

equation, which supports the modeling of reparables that exhibit wear-out and reliability 

growth trends.  From the second central moment, the VBO equation is shown below in 

Equation 3: 

                                   (3) 

where 

  is the second moment of the backorder =  

  is the square of the Expected Backorder function 
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 Three probability distributions are utilized in this research that best represent the 

variability of the backorders.  The Poisson distribution is used extensively to model 

random failures (Sherbrooke, 2004: 21, Banks et al., 2010: 205).  However, the current 

research is focused on modeling generalized Poisson failure processes that exhibit wear-

out and reliability deterioration.  For wear-out processes where demand rates increase 

around a service life, this can be conveniently represented by the Binomial distribution: 

               (4) 

where 

 x is the number of successes in n trials, each trial with ρ success probability 

 n = μ / (1 – VTMR) (μ = mean of the demand, VTMR = Variance-to-Mean Ratio) 

 ρ = 1 – VTMR 

 VTMR < 1 for Binomial distribution 

 
 For reparables that exhibit reliability deterioration over time, the VTMR tends to 

increase, consistent with a Poisson process with non-stationary increments.  The Negative 

Binomial distribution can be represented in Equation 5: 

    (5) 

where 

 x is the number of failures, a is the number of successes, x + a  total trials 

 a = μ / (VTMR - 1) 

 b = (VTMR – 1) / VTMR 



25 

 VTMR > 1 for Negative Binomial 

 The current research will factor such probability distributions to include in the 

model so that provisions can be afforded to realistically represent the failure behaviors of 

aircraft reparables as opposed to the traditional Poisson random failure process. 

Pipeline Equations 

 To determine the optimal spares level required, the proposed model must analyze 

the demand for spares generated by failures from aircraft utilization.  This demand results 

in the need for replacement components, fulfilled from a spare pool.  The defective 

components enter the repair cycle pipeline and it is the variability of this pipeline (size 

and turnaround time) that is the focus of inventory optimization.  The pipeline size 

denotes the number of units of an item in repair at a site or being resupplied to the site 

from a lower repair echelon. It consists of 2 components, namely, the number of demands 

during the turnaround time (TAT) and the number of demands prior to the TAT awaiting 

a lower echelon item that is backordered and impedes the recovery of the higher echelon 

item.  All METRIC models are founded on this fundamental notion of pipeline 

optimization.  To illustrate, consider the case of a two-level indenture LRU/SRU pipeline 

represented by the following Equation 6: 

                                              (6) 

where 

 E[X0] is the expected pipeline size of a higher echelon reparable 0 (e.g. an LRU) 

 m0T0 is the expected demand during the TAT of the LRU (where m0 is the  

 demand rate and T0 the TAT) 
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    is the Summation of all Expected Backorders of I lower  

 echelon reparables (i.e. SRUs) that make up the higher echelon LRU and this  

 impedes the recovery of the LRU 

  

 Similarly, the dispersion around this pipeline expectation can be represented by 

the variance of the pipeline, represented by the following Equation 7: 

                                        (7) 

where 

 V[X0] is the variance of pipeline size of a higher echelon reparable (e.g. an LRU) 

    is the Summation of all Variance Backorders of lower echelon 

 reparables (i.e. SRUs) that make up the higher echelon LRU. 

 

Operational Availability (Ao) Equation 

 One of the advantages in deploying the METRIC model is its ability to aggregate 

supply stocking analysis to Ao computations (Sherbrooke, 2004: 2-3, 14-17).  It provides 

a system approach to associate a direct relationship between the stocking decision and the 

effect on overall system performance.  The decision to expense budget on the type and 

level of spares to purchase could have been easily resolved on an item approach, but it is 

the translation of the METRIC model to system performance that affords the edge to 
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decision makers on the cost-effectiveness dimension.  The Ao equation that will be 

employed in this research is shown below in Equation 8: 

                 (8) 

where 
 MTBF = System Mean Time Between Failure 

 MTTR = System Mean Time to Repair 

 MSD = System Mean Supply Delay 

  

 In this research, we will only assume corrective maintenance affecting overall 

system performance.  Preventive Maintenance (PM) is inherently predictable and 

stocking of spares would have been pre-planned prior to the sustainability period.  In 

addition, management decisions would have been focused to minimize the need for PM, 

but even if it is required during the sustainability period, it would have been carried out 

during lull periods and would not have much impact on Ao.  The System MTBF can be 

analytically computed from the model, utilizing the Poisson pooled process assumption 

given by Equation 9: 

                                           (9) 

where 

 λi is the failure rate (i.e. demand rate) of the ith LRU 

 QPNHAi is the Quantity per Next Higher Assembly of the ith LRU 
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 The System MTTR measures maintenance efficiency on the time required to 

repair and turnover an aircraft.  In the sustainability period, manpower constraints are 

deemed sufficient so that planning norms on MTTR are usually assumed. The System 

MSD can be expressed in terms of backorders computation and relates the stocking levels 

of all LRUs to the expected down time that the system experiences due to the delay in 

spare availability.  This is shown below in Equation 10: 

                                    (10) 

where 

 OST = Order & Ship Time (planning norm) 

  is the portion of the MSD that translates the total expected  

 backorders of all ith LRUs into a time delay experienced by the system 

 
 To allow sustainability analysis to be conducted, the system Ao performance must 

be modified to include provisions for varying operational demands to effect changes to 

the availability computation.  To achieve this, the concept of Aircraft Utilization Rate 

(UR) can be introduced.  UR defines the intensity of operational demand (in terms of 

flying hours) on the system and this intensity changes in a varying operating profile 

imposed on the aircraft fleet.  Equation 11 shows the definition of UR: 

         (11) 

where 
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 Segment Duration defines the duration of time of the individual segment that the 

aircraft fleet experiences different flying intensity. 

  

 Aircraft Segment UR is a unit-less quantity and is directly proportional to the 

intensity of flying experienced in the individual segments.  A UR of 0.5 denotes an 

aircraft is airborne half the time in a particular time segment.  This will be used to scale 

the System MTBF accordingly to reflect the impact of flying intensity in varying periods 

of operations on system behavior of failure tendency. 

 With the above equations, the overall Ao equation can be re-expressed as 

Equation 12: 

     

(12) 

RSAF Reparable Pipeline Equations 

 Having analyzed the equations required for fundamental inventory modeling, it is 

timely to re-visit the RSAF context so that the computations can be customized in terms 

of demand rates, pipeline expected backorder and variance backorder evaluations.  Both 

the demand and backorder computations are complimentary in their calculation sequence.  

With reference to Figure 2-1, Figure 3-2 summarizes this concept in the RSAF context: 
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Figure 3-2.  RSAF Reparable Calculation Sequence 

 

Demand Rates 

 Based on the Poisson random splitting process (Banks et al., 2010:34-39), the 

average demand rate for a lower echelon item, e.g. SRU j, is the average demand rate for 

the higher echelon item, e.g. LRU i, times the probability that the LRU repair results in a 

demand for SRU i and divide by the QPNHA for SRU i.  The same relationship exists 

between the SRU and SSRU.  The demand rate equation is given below in Equation 13: 

                        (13) 

where 

 mi is the demand rate of SRUi 

 m0 is the demand rate of the higher echelon LRU0 

 ri is the probability of demand for SRUi when LRU0 fails 

 QPNHAi is the Quantity per Next Higher Assembly of SRUi 
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 For the SRU/ SSRU relationship, the notation i is substituted by j to denote the 

SSRU and the notation 0 is substituted by i to denote the higher echelon SRU.  In 

addition, the RSAF context calls for the complete separability of the various levels of 

item repair capability and this causes the mirroring of the OD demand rates from the 

Base to the Overseas Depot (OEM). 

Mean and Variance of RSAF Repair Pipelines 

 With reference to Figure 3-2, the backorder computations start off at the lowest 

levels of the repair hierarchy.  This consists of LRU, SRU and SSRU repair at the OD 

level and the SSRU repair at the LD level.  At the OD level, the demand rate seen by the 

OEM is the “mirror” of the demand rates seen at the Base.  As such, the pipeline size 

consists of both the demand during the TAT and the EBO of the affected part.  Equation 

14 and 15 detail the expected and variance pipeline sizes of these items: 

For LRU OD repair: 

                                     (14) 

                                    (15) 

For SRU OD repair, replace notation 0 with i and for SSRU LD and OD repair, replace 

0 with j. 

 For Base LI repair of SRU and LRU, the dependency between the Base and LD 

repair cycle translates to pipeline sizes that must consider the backorder computations of 

the lower echelon items.  As such, the pipeline computations will be different from 

Equations 14 and 15: 
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For LRU LI repair: 

                                    (16) 

                                    (17) 

For SRU LI repair, replace notation 0 with i and notation i with j. 

 With the expected and variance pipeline sizes defined, the backorders are 

computed either through Equation 4 or 5 to first calculate the relevant probabilities and 

then applied to Equations 2 and 3 to obtain the expected and variance backorders 

respectively.  Of note, the use of either Equation 4 or 5 depends on the ratio of the 

variance to mean pipeline size (i.e. the VTMR) – for VTMR < 1, Equation 4 invokes the 

Binomial distribution and for VTMR > 1, Equation 5 invokes the Negative Binomial 

distribution.  Taken together, the EBO of a higher echelon item would be given by 

Equation 18: 

                                          (18) 

That is, the Expected Backorder EBO of an item is a function of its spare level S0, given 

an expected pipeline size E[X0] and a variance of pipeline size V[X0]. 

 Unique treatment to the EBO computed for LD SSRU is required to cater the 

spare levels for these low cost, high demand items.  Instead of a (s-1, s) inventory policy, 

a (R, Q) EOQ model is more appropriate to define an item approach for stocking these 

items.  Fortunately, the EBO computed for these items can be used to approximate the 

stocking levels required (Sherbrooke, 2004: 19-41).  The EOQ is given in Equation 19: 
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                                          (19) 

where 

 Q = Ordering quantity  FC = Fixed Ordering Cost 

 σ = Standard deviation of demand over a lead time =  

 m = demand rate per hr PLT = Procurement Lead Time (hrs) 

 IC = Inventory Carrying Cost Rate (per unit per $)  UC = Item Unit Cost 

 

The re-order quantity R can be resolved in Equation 20: 

                      (20) 

As such, the SSRU LD EBOj enters the computation to influence the re-order quantity R. 

Dynamic Operational Profile Conversion Model 

 The computation given by Equation 8 allowed the coupling of the relationship 

between Ao and MSD (hence supply EBO).  Equation 12 further extend the concept to 

provide the ability to study varying period of flying intensities by including UR to scale 

the System MTBF.  At this juncture, the research had since set up the provisions for both 

optimization and sustainability analyses (i.e. the “what”).  It is now crucial to evaluate the 

impact of how these varying intensities affect the provisions (i.e. the system behavior) to 

derive the computational data input for model optimization and sustainability analyses 

(i.e. the “how-to”). 
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Optimization Analysis Treatment 

 From Equation 12, the variables that will change with time periods of varying 

flying intensities will be UR and EBO.  Furthermore, EBO can be seen to vary with 

E[X0] and V[X0] in Equation 18.  Tracing these to Equations 14 and 15, the pipeline sizes 

are a function of both the demand rate (m) and turnaround time (TAT).  As mentioned 

previously, varying the demand rate m was the central focus behind the Dyna-METRIC 

model but it would be difficult and complex for the current research model to define 

hazard rates m(t), while at the same time deploy a model that is easy to use and quick in 

computation.  As such, we will derive the relationships between Ao and UR and between 

UR and TAT as the focus of this research to enable the model to breakdown the effect of 

varying flying profile. 

 
Utilization Rate Effects 

UR vs Ao 

  The effect of UR on Ao can be demonstrated through an example.  Suppose a 

sustainability period with 3 distinct segments of flying intensity and the following 

arbitrary figures for computation of Ao: 

System MTBF = 200 hrs  MTTR = 2 hrs  OST = 20 hrs 

EBO = 0 (i.e. infinite spares – chosen to isolate the effect of UR on Ao) 

UR for Segment 1 = 0.5 UR for Segment 2 = 0.8 UR for Segment 3 = 0.3 

 

Using Equation 12, the various Maximum Achievable Ao in each segment are: 

Ao for Segment 1 = 94.8% Ao for Segment 2 = 91.9% Ao for Segment 3 = 96.8% 
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 Clearly, the minimum Ao achievable within the entire sustainability period is 

Segment 2 (91.9%) with the highest intensity (UR of 0.8).  This implies that the model 

needs to consider the UR of the highest intensity segment as the input for the optimization 

phase in order to cater the spare level required to sustain the segment with most spares 

requirement.  This is in consideration that EBO will never be zero and its inclusion into 

the above example will further reduce Ao. 

UR vs LI/LD TAT 

 Turning the attention to UR effects on TAT, we will first examine the case of LI 

and LD TATs.  Often, these TATs are shorter than the duration of the entire sustainability 

period and they change from longer peacetime planning norms to shorter surge duration 

when maintenance efforts intensify from segment to segment.  To illustrate the 

characteristics of TAT changes within the sustainability period, consider the same 

example, where: 

System MTBF = 10 hrs (Demand Rate = 1 / 10 per hr) 

EBO = 0 (i.e. infinite spares – chosen to isolate the effect of UR on TAT) 

UR for Segment 1 = 0.5     UR for Segment 2 = 0.8      UR for Segment 3 = 0.3 

TAT for Segment 1 = 168hrs   TAT for Segment 2 =72 hrs    TAT for Segment 3 = 72 hrs  

 

If Equation 14 is modified to compute the relative pipeline size of each segment, i.e. 

Pipeline Size = UR * m0 * T0, then: 

Pipeline Size for Segment 1 = 8.4 

Pipeline Size for Segment 2 = 5.8 

Pipeline Size for Segment 2 = 2.2 
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 It is observed that the largest pipeline size occurs in Segment 1, however this does 

not coincide with the segment with the highest UR.  Previously, it was determined that 

the UR of the highest intensity segment will be used as input in optimization studies, but 

if its corresponding TAT is used (in this example 72 hrs in Segment 2), the optimization 

output would under-estimate the level of spares.  Hence, a weighting factor (WF) based 

on the relative UR would need to be applied to scale the TAT in the highest intensity 

segment as a function of the TAT in the max pipeline segment.  As such, this weighting 

factor is defined below in Equation 21: 

                              (21) 

 

and the weighted TAT: 

            (22) 

 Through Equations 21 and 22, a relationship between UR and LI/LD TAT is 

derived.  Of note, if WF equals 1 when the max pipeline segment is also the highest UR 

segment, there will be no change in the TAT value and the computation would be based 

exactly on the UR and TAT parameters experienced in the highest intensity segment. 

UR vs OD TAT 

 OD TATs, unlike LI/LD TATs, are often longer than the sustainability period due 

to the lead-time of OEM repair and the possibility of embargo conditions.  OD items can 

be viewed as “non-reparables”, discarded as failures occur in the sustainability period.  

Therefore, the OD TAT should reflect the duration of utilization of the system over the 

sustainability period.  However, since UR is different in different segments, an average 
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UR is first computed over the entire period and then weighted with the Max UR to obtain 

an approximation of OD TAT.  This is shown in Equation 23: 

                         (23) 

Then the weighted OD TAT is: 

       (24) 

 

Sustainability Analysis Treatment 

 The optimization analysis will output a baseline spares package to support 

operational requirements in the segment with the highest UR.  The prior UR 

modifications are focused on weighting the various TATs to approximate the conditions 

for spares provision.  However, for sustainability analysis, the performance of this spares 

package need to be imposed with the “true” planning norm TATs that are stated in 

current logistics policies.  This would mean LI/LD Original TATs planning norms will be 

used at the various segments to perform the sustainability analysis using the same 

optimization model, while holding the baseline spares at the level defined in the prior 

optimization phase.  The problem is with OD TAT, since planning norms cannot be used 

in this respect, as their duration is often more than the duration of the entire sustainability 

period.  The OD TAT in sustainability analysis in every segment can be viewed as the 

cumulative elapsed time in the sustainability period weighted to the utilization seen by 

the system in the current segment: 
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                  (25) 

The denominator in Equation 25 weights the total elapsed time seen by the system (the 

numerator) by what is seen in that particular segment of analysis.  Equation 25 is 

different from Equation 24 as it computes the elapsed OD Item TAT in each segment, 

whereas Equation 24 computes the OD Item TAT seen by the system in the entire 

sustainability period (inclusive of all segments). 

 

Non-Linear Programming (NLP) Model Development 

 The various equations developed will now be laid out in a spreadsheet model, in a 

form suitable for both optimization and sustainability analyses.  The objective is to ensure 

a WYSIWYG interface so that analysts are able to appreciate all the interactions between 

the model specifics and hence better positioned to conduct quick sensitivity analyzes (one 

of the main impetus for this research).  This section will explain the model development 

by stepping through the process necessary for deployment of the model as it would be 

done in actual implementation of any optimization and sustainability studies. 

Step 1:  Collect the Spares Data according to the format detailed in Appendix A. 

Step 2:  Logistics parameters (RLT, OST, PLT, etc.) are collected and combined with the 

Spares information in a form excerpted in Appendix B. 

Step 3:  Operational parameters (Segment Duration, Segment FH, Operational Assets, 

etc.) are collected and input to the Dynamic Operational Profile Conversion Model 

(Appendix C) to compute the various optimization and sustainability analysis modeling 
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parameters (Segment & Weighted TATs, Segment & Max UR, etc.).  For this research, 

operational parameters are arbitrary assumed figures. 

Step 4:  Compute items’ backorders based on the level of spares hierarchy defined for the 

individual spares (i.e. expected & variance pipelines, expected & variance backorders of 

different permutations of Repair Cap (LI, LD or OD); and spares hierarchy (LRU, SRU 

or SSRU)).  An excerpt of this computation is provided in Appendix D.  To aid in the 

automation of the computations, Excel VBA® Macros were written to define the 

applicable EBO computations (i.e. Poisson, Binomial and Negative Binomial).  The 

programming scripts are detailed in Appendix E. 

Step 5:  Compute the Spares Optimization and System Performance Measures (System 

MTBF, Cost of Spares and Ao) through setting up a NLP Model.  The NLP logic is 

provided in Appendix F.  Microsoft Excel add-in Solver® tool is utilized to formulate 

and compute the spares requirement. 

Step 6:  With the baseline spares package optimized, input the sustainability analysis 

individual segment parameters (Original Segment UR, Original Segment LI/LD TATs 

and Weighted Segment OD TAT) into the same optimization model to compute the 

System Performance Measures in individual segments.  This is done with the individual 

items’ spare levels held at the quantity that were optimized at the required Ao. 
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IV. Results and Analysis 

 This chapter documents the results and analysis of the unique solution models 

developed in this research.  First, the optimization’s output is compared to a similar 

OPUS10 model output to verify and validate the model’s performance in a Poisson case 

(where VTMR = 1).  Second, the analysis of an optimization output from the model (with 

assumed VTMR) will be compared to the Poisson output to further validate the behavior 

of the Ao performance.  Third, two baseline spares packages will be obtained from the 

model output and will be subjected to a sustainability analysis to evaluate the spares 

performance over an arbitrary selected period of varying flying profile.  Insights will be 

deduced from the observations attained.  Finally, overall model performance will be 

evaluated for its ability to combine ease of use, versatility and speed of analyses. 

Verification and Validation 

Model Setup 

 To conduct the Verification and Validation (V&V) phase of the model 

development, a varying operational profile is arbitrary chosen, imposed on a subset of 

aircraft sub-systems’ spares.  This is deliberately done in order to confine the research for 

proof of concept of the model.  A four-segment sustainability period with the following 

parameters was chosen for the optimization and sustainability model: 

 Fleet Size:  40 

  Segment 1:   Duration = 1 month   UR = 0.0233 

  Segment 2:  Duration = 1 week   UR = 0.5 

  Segment 3:  Duration = 2 weeks   UR = 0.0372 

  Segment 4:  Duration = 1 week   UR = 0.0298 
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 As mentioned, the spares information was selected based on the ability to exhibit 

failure wear-out and reliability deterioration characteristics.  While the current RSAF 

ERP database do not capture the variances of MTBF and data collection in this respect 

would be manual down to component records, the current research will only arbitrary 

assume the figures particular to the nature of failure tendencies.  The focus is to 

demonstrate the ability to model such parameters, given the necessary data input.  For the 

sub-systems used in this model, the VTMR assumed are: 

Propulsion, Fuel, Hydraulic components – VTMR = 0.75          [Wear-out tendency] 

Flight Control, Weapon Delivery components – VTMR = 3      [Reliability Deterioration] 

Detailed operational and logistics parameters are shown in Appendices A, B and C. 

 The NLP logic was setup with the use of Excel Solver® add-in.  The Generalized 

Reduced Gradient (GRG) method was selected to resolve the NLP model.  This method 

was chosen for its robust and reliable approach to solving non-linear problems (such as 

that presented in this research) as opposed to the Evolutionary method.  Although one of 

the main limitations with the GRG method is its guarantee of only locally optimal 

solutions (Frontline Systems, 2010: 15), the accompanied Multistart technique to find a 

global solution casts too wide a solution space, hindering efficient run-time.  A unique 

technique was engaged in this research to overcome this limitation by running the GRG 

method over 30 replications to obtain various local optimal solutions, enough for 

inference statistics to estimate the global solution; and by alternating these runs between 

spares cost increasing from 0 and decreasing from max budget, to ensure the obtained 

optima are independent indicators of the solution space.  This technique not only 

estimates the probable global solution, but importantly, it conserves required run-time. 



42 

NLP and OPUS10 Models Comparison 

 Software validation was utilized to evaluate the NLP model performance.  A 

Cost-Effectiveness (CE) curve from the NLP model was produced for comparison with 

an equivalent OPUS10 model output2, a total of 2700 data points were captured over the 

30 replications.  As OPUS10 only produces a cost-effectiveness solution based on the 

Poisson pipeline assumption, the NLP model was modified to induce the same Poisson 

assumptions (i.e. VTMR = 1 for all sub-system components) for comparison.  Appendix 

G details the results from both models.  Figure 4-1 summarizes both model results in the 

form of a cost-effectiveness curve: 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-1.  NLP Model vs OPUS10 Model Poisson Output 

 
                                                 
2 An OPUS10 Model was developed with the assistance from AELO HQ and Defence Science & 
Technology Agency (DSTA) Systems Engineering Programme Centre.  The OPUS10 results are 
detailed in Appendix H. 



43 

 With reference to Figure 4-1, various observations for validation can be deduced.  

First, the boundary conditions are justifiably validated at 6% initial Ao for no spares 

investment and at 89% when infinite spares are catered.  Second, the NLP CE curve 

shows the same tracking behavior as the OPUS10 output, both Ao proportionately 

increasing with spares investment up till a diminishing region around 75 – 80% Ao.  

Third, in terms of tracking performance, the NLP Model was statistically indifferent 

(95% confidence interval and normally distributed) from the OPUS10 output from 0 – 

40% and 85 – 89% Ao.  Although the NLP Model is statistically different within the 

region of 40 - 85% Ao, the practical significant difference is not great, at around 5 – 10% 

from the OPUS10 output.  Further evaluation of the spares output revealed that the Ao 

difference was due to the proposed stock level for the Engine LRU.  The NLP model 

proposed 2 engines with accompanying reduced levels of SRUs and SSRUs, while the 

OPUS10 output proposed 1 engine with higher levels of the sub components.  The NLP 

model was able to achieve this with a higher Ao and less cost investment.  In addition, an 

emphasis to LRU stock is more advantageous in a sustainability setting since aircraft 

turnaround is vital in maintenance operations. 

NLP Binomial/ Negative Binomial and Poisson Models Comparison 

 To further validate the model, the Binomial and Negative Binomial (Bin/Neg Bin) 

modeling capability was evaluated.  Instead of VTMR = 1 for OPUS10 comparison, the 

various VTMRs assumed were utilized.  With the majority of components at VTMR < 1 

(i.e. 25 components out of 32 assumed VTMR = 0.75 and the remaining 7 components 

with VTMR = 3), the variability of the pipeline sizes is hypothesized to be smaller than 
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the Poisson case and therefore higher certainty that less spares would be needed for same 

Ao performance.  The NLP outputs for this analysis can be summarized in Figure 4-2: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2.  NLP Model Bin/NegBin vs Poisson Outputs 

 
 It can be observed that the less variability of pipeline sizes in the Bin/NegBin 

model results in a smaller budget needed for spares top-up to achieve a same level of Ao 

as the Poisson output.  In addition, the saturation of Ao also happens at a lower budget in 

comparison to the Poisson model, further supporting the hypothesized behavior of the 

assumed model. 

 With all these observations, the developed model is sufficiently validated to 

model the failure behavior of aircraft sub-system spares.  In addition, the model was able 

to achieve these outputs while conserving run time in a WYSIWYG spreadsheet 
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environment.  We can conclude that the model is appropriately effective in its 

optimization capability. 

Sustainability Analysis 

 In this section, the optimization capability of the model is translated to a form 

suitable for sustainability analysis to evaluate the performance of spares over the assigned 

segments’ duration within the sustainability period.  Referring to the previously obtained 

optimization output of the Bin/Neg Bin model, 2 optimization spares packages were 

chosen to demonstrate this portion of the model capability.  Figure 4-3 shows the 2 spares 

package chosen for the sustainability analysis: 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-3.  NLP Model Output for Spares Package Selection 
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 The first package (78.4% Ao, $22M spares cost – henceforth referred to as 

Package 1) was selected as the most cost-effective spares mix at the end of increasing 

marginal returns.  The second package (84.1% Ao, $29M spares cost – henceforth 

referred to as Package 2) was selected based on planning experience to ensure a certain 

level of fleet serviceability state but however may not be a cost-effective mix since it is 

within the region of diminishing marginal returns.  These 2 spares packages were 

deliberately chosen to illustrate the sensitivity performance that the model affords to 

influence decision-making on spares acquisition. 

 The spares level for every component in each selected package is input to the 

model and the UR/TAT parameters computed in the dynamic operational profile 

conversion model for each segment is also varied to generate the Ao variation over the 

segments.  The results from the analyses are summarized in Figure 4-4: 

 

 

 

 

 

 

 

 

 

 

Figure 4-4.  Sustainability Analyses of Spares Packages 
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 From Figure 4-4, the Ao achieved in each segment is obtained for both spares 

packages.  It can be observed that the Ao performance decreases over the four segments 

with the largest decrease observed in Segment 3.  The spares optimization in the prior 

stage ensures that enough spares are catered for operations in the highest intensity 

segment (i.e. Segment 2) with the longest sustained OD TAT (i.e. Segment 4), that is why 

Segment 2’s Ao achievement would always hover above the desired optimization Ao 

(78.4% and 84.1% respectively for Packages 1 and 2).  The effects of embargo on OD 

TAT would therefore be felt in downstream segments after Segment 2 and the pipeline 

increases more significantly for OD TAT items, culminating to large decrease in Ao 

expected in Segment 3.  The pipeline eventually stabilizes since UR is reduced to normal 

operational levels in Segment 4.  Although this results in further Ao reduction into 

Segment 4 but it occurs at a rate less than Segment 3. 

 The insignificant practical differences between the packages’ segment Ao 

variations are also noteworthy.  Differing only by a maximum of 1% in all segments (e.g. 

51.2% vs 52.2% in Segment 3), either package can sufficiently support the assumed 

operational profile.  This means that the concept of diminishing marginal return holds and 

any additional spending on spares would not translate to higher Ao achievement.  To 

support this notion, package 1 was selected on the premise that “critical” spares (e.g. the 

Engine LRU that effects a higher impact on total system backorder) were catered to bring 

about higher marginal benefit and Package 2 adds only to very slight increase in that 

benefit by increase spending on “non-critical” spares.  When a sustainability period is 

imposed, the critical spares are consumed in both packages and the overall impact on 
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system backorders is the same.  As such, the systemic Ao reduction would be similar in 

both cases, differing only by the slight effect of additional “non-critical” spares. 

 Overall, these observations allow analysts to critically examine the effort of 

spares optimization to evaluate the impact on sustainability performance and better 

position them in such inventory modeling domain knowledge.  Both the optimization and 

sustainability models must be utilized in synchronized mode to create better sense and 

decision making in spares acquisition, trading between their costs, benefits and effects. 

Model Run-Time Performance 

 With reference to Table 2-1 of the literature review section, one of OPUS10 

limitations was the need for considerable effort in constructing the data and model inputs.  

The objective in OPUS10 was to eliminate the need to understand the optimization 

engine but this inevitably meant more time spent on customizing the information to a 

form suitable for the software.  In comparison, the NLP model provides the same 

WYSIWYG platform for both data inputs and model construction.  There is no 

requirement to further manipulate the data as it is already entered in a form built for the 

modeling phase.  Although Solver run-time is not as comparable to the speed of OPUS10 

analytical engine, the overall effort to conduct an analysis is substantially less.  Table 4-1 

summarizes the time comparison between the two platforms in carrying out optimization 

studies: 
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Category Sequential tasks for a single analysis 
OPUS10 Model 
Analysis Time 

(mins) 

NLP Model 
Analysis Time 

(mins) 

Data 
Entry 

Collate and manipulate input data in Excel 15 15 

Convert input data to software input format 30 Nil 

Modeling 

Create / Modify existing software's operations 
and logistics profile model 25 15 

Input of data into software 10 Nil 

Results 
Output 

Generate run results 5 15 

Analyze results 5 5 

Total Time Required 90 mins 50 mins 

Table 4-1.  Comparison of Time Required for OPUS10 and NLP Model Studies 
 

 With all the favourable observations and analyses of the output results, the NLP 

model can be concluded as satisfactorily verified and validated for turnkey 

implementation. 
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V. Conclusion and Recommendation 

 This chapter closes out the effort of this research.  First, the objectives are re-

visited to ensure that the requirements have been met by the research outcomes.  Second, 

the significance of the effort is examined for its relevance in potential applications and 

benefits in the RSAF’s context.  Third, recommendations for action are proposed so that 

follow-on implementation of the research model can be realized.  Finally, the research 

assumptions are reassessed to examine areas where future research can be explored. 

Conclusion of Research 

 The objectives put forth at the start of this research were satisfactorily met.  The 

model provided an easy-to-use interface to simultaneously allow the handling of data 

input and modeling interactions that ensure analysts are able to systematically step 

through the modeling process.  This logical flow also enables the model to customize 

different maintenance support scenarios, making the solution versatile in its adaptation. 

Accuracy was achieved by the ability to model variations of component VTMRs to better 

represent all failure behaviors.  These capabilities were realized through a model 

designed with readily developed templates for dynamic operational profile conversion 

and NLP optimization logic, allowing speedy analyses to be conducted.  The outputs 

provided insights on the most cost-effective spares proposal.  Coupled with the 

appreciation of spares performance over dynamically changing operations, the model 

delivered the edge needed to conduct spares optimization and sustainability analyses for 

O&S planning and contingency operations, which would otherwise be difficult in a 

“black-box” software.  Finally, the successful validation results culminated the basis for 

practical deployment of the tool for implementation within the RSAF. 
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Significance of Research 

 This research is in tandem with AELO’s push towards seeking new, agile and 

responsive logistics solutions to support an expanding RSAF’s force structure.  As more 

complex and sophisticated weapon systems are acquired, the requirements change to take 

new forms and the maintenance support concepts have to be synchronized to better 

sustain these operations.  The optimization/sustainability model developed in this 

research provides a versatile platform to provide this edge in inventory modeling.  It was 

designed around inventory modeling fundamentals and can be easily adapted to study 

different reparable maintenance scenarios.  The analysts need only modify the model 

structures to best suit the problem on hand, but the computations are similar.  This was 

possible due to the strength of the WYSIWYG design interface.  Moreover, because of 

this design principle, the analysts are equipped with the tool necessary to deepen their 

competencies in supply chain management expertise within the inventory-modeling 

domain.  They will be able to conduct swift, accurate and credible inventory spares 

analyses to support O&S and Contingency operations and hence expand expertise on 

spares planning for future operating concepts, grounding their knowledge to meet the 

engineering demand in the Third Generation RSAF. 

Recommendations for Action 

 The research model was developed on a representative set of aircraft sub-system 

components.  The next stage would be to implement a turnkey version to include all 

components.  The 6-steps process of model development, explained in Chapter 3, will 

logically step the analyst through the model deployment, as it would be done in actual 

implementation of any optimization and sustainability studies.  Further validation should 
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be conducted, both with OPUS10 and with actual field data (actual component VTMRs 

and spares utilization rates over time) to solidify the implementation of the model.  Once 

that is achieved, the model can be deployed in contingency operations planning to carry 

out analyses and real-time performances would aid to improve and modify the model in 

areas like modeling structures and planning parameters.  Subsequent rollout of the model 

on all aircraft platforms will eventually see widespread adoption and unique 

modifications tailored to support aircraft-specific maintenance scenarios. 

Recommendations for Future Research 

 Some of the assumptions made in Chapter 2 can be relaxed to develop areas 

where future research can be explored.  First, the assumption of an in-country fighter fleet 

can be expanded to include various operating sites.  The model can be tailored to 

compute the unique pipeline characteristics that individual sites experience and the spares 

optimization can be conducted for each site.  The overall fleet availability is then 

aggregated from these individual site performances.  However, the behavior of the model 

needs to be studied further if such expansion can be accommodated while sustaining run-

time and accuracy of analysis.  Second, while this research assumes Ao performance is 

affected only by the cost of spares, the variability of other maintenance factors (e.g. 

MTTR manpower constraints and cannibalization effects) and logistics parameters (e.g. 

OST and lateral base support) can be studied further to generate more systemic measures 

on the total effect on operational performance.  Third, corrective maintenance MTBF is 

assumed the driving factor behind the demand rates in the model.  The study can be 

expanded to explore the effects of preventive maintenance policies and how that affects 

the overall optimization.  The resulting stock levels may be used to assess the viability of 
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conducting preventive maintenance in the sustainability period.  Finally, the sustainability 

analysis portion of the model is an analytical solution and provides a fixed Ao 

performance metric in each individual segment.  However, better fidelity of the Ao on a 

per unit time basis (e.g. day to day) will better track the time-varying performance and 

not be confined as a segment metric.  This is especially crucial and valuable for decision-

making in time-sensitive operations.  To deliver this capability, Monte Carlo simulation 

can be utilized in a secondary model to collect unit time status of spares consumption and 

backorders count as the aircraft system is subjected to varying utilization; and 

accordingly the sustainability analysis can be made to output Ao variation over time. 
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Appendix A 

Spares Data 
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Appendix B 

Combined Spares Data and Logistics Parameters (Propulsion System Excerpt) 
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Appendix C 

Dynamic Operational Profile Conversion Model (4-segment Sustainability Period) 
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Appendix D 

Item Backorders and System Performance Computations (Propulsion System) 
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Appendix E 

Excel VBA® Macro Programming Scripts 

 
 
 
 
EBO and VBO for Poisson Distribution: 
 
 
 
Public Function EBOPOISSON(Mean As Double, Stock As Integer) As Double 
    EBOPOISSON = Mean - Stock 
    For x = 0 To Stock 
        EBOPOISSON = EBOPOISSON + (Stock - x) * 
Application.WorksheetFunction.Poisson(x, Mean, False) 
    Next x 
End Function 
 
 
Public Function VBOPOISSON(Mean As Double, Stock As Integer) As Double 
    VBOPOISSON = 0 
    For x = (Stock + 1) To 999 
        VBOPOISSON = VBOPOISSON + ((x - Stock) ^ 2) * 
Application.WorksheetFunction.Poisson(x, Mean, False) 
    Next x 
    VBOPOISSON = VBOPOISSON - (EBOPOISSON(Mean, Stock) ^ 2) 
 
End Function 
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EBO and VBO for Binomial Distribution: 
 
 
 
Public Function EBOBINOM(Mean As Double, Stock As Integer, VTMR As Double) As 
Double 
    n = Application.WorksheetFunction.RoundDown(((Mean / (1 - VTMR)) + 0.99), 0) 
    p = Mean / n 
    EBOBINOM = Mean - Stock 
    For x = 0 To Stock 
        EBOBINOM = EBOBINOM + (Stock - x) * 
Application.WorksheetFunction.BinomDist(x, n, p, False) 
    Next x 
End Function 
 
 
Public Function VBOBINOM(Mean As Double, Stock As Integer, VTMR As Double) 
As Double 
    n = Application.WorksheetFunction.RoundDown(((Mean / (1 - VTMR)) + 0.99), 0) 
    p = Mean / n 
    VBOBINOM = 0 
    For x = (Stock + 1) To n 
        VBOBINOM = VBOBINOM + ((x - Stock) ^ 2) * 
Application.WorksheetFunction.BinomDist(x, n, p, False) 
    Next x 
    VBOBINOM = VBOBINOM - (EBOBINOM(Mean, Stock, VTMR) ^ 2) 
     
End Function 
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EBO and VBO for Negative Binomial Distribution: 
 
 
 
Public Function COMBINATIO(a, x) As Double 
    If (x = 0) Then 
        COMBINATIO = 1 
    ElseIf (x = 1) Then 
        COMBINATIO = a 
    ElseIf (x = 2) Then 
        COMBINATIO = ((a + x - 1) * a) / Application.WorksheetFunction.Fact(x) 
    ElseIf (x = 3) Then 
        COMBINATIO = ((a + x - 1) * (a + x - 2) * a) / 
Application.WorksheetFunction.Fact(x) 
    ElseIf (x = 4) Then 
        COMBINATIO = ((a + x - 1) * (a + x - 2) * (a + x - 3) * a) / 
Application.WorksheetFunction.Fact(x) 
    ElseIf (x = 5) Then 
        COMBINATIO = ((a + x - 1) * (a + x - 2) * (a + x - 3) * (a + x - 4) * a) / 
Application.WorksheetFunction.Fact(x) 
    ElseIf (x = 6) Then 
        COMBINATIO = ((a + x - 1) * (a + x - 2) * (a + x - 3) * (a + x - 4) * (a + x - 5) * a) 
/ Application.WorksheetFunction.Fact(x) 
    ElseIf (x = 7) Then 
         
“Recursive”, continue to cover till x = 50 
 
    Else 
    End…. 
    End If 
End Function 
 
 
Public Function EBONEGBINOM(Mean As Double, Stock As Integer, VTMR As 
Double) As Double 
    a = Mean / (VTMR - 1) 
    b = (VTMR - 1) / VTMR 
    EBONEGBINOM = Mean - Stock 
    For x = 0 To Stock 
        EBONEGBINOM = EBONEGBINOM + (Stock - x) * ((COMBINATIO(a, x)) * (b 
^ x) * ((1 - b) ^ a)) 
    Next x 
End Function 
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Public Function VBONEGBINOM(Mean As Double, Stock As Integer, VTMR As 
Double) As Double 
    a = Mean / (VTMR - 1) 
    b = (VTMR - 1) / VTMR 
    VBONEGBINOM = 0 
    For x = (Stock + 1) To 50 
        VBONEGBINOM = VBONEGBINOM + ((x - Stock) ^ 2) * ((COMBINATIO(a, 
x)) * (b ^ x) * ((1 - b) ^ a)) 
    Next x 
    VBONEGBINOM = VBONEGBINOM - (EBONEGBINOM(Mean, Stock, VTMR) ^ 
2) 
     
End Function 
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Appendix F 

Non-Linear Programming Logic 

Logic: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Microsoft Excel Solver® Setup: 
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Appendix G 

NLP Poisson Model vs OPUS Model Data Output  

VTMR = 1 for all items 
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Appendix H 

OPUS Model Cost-Effectiveness Output 
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